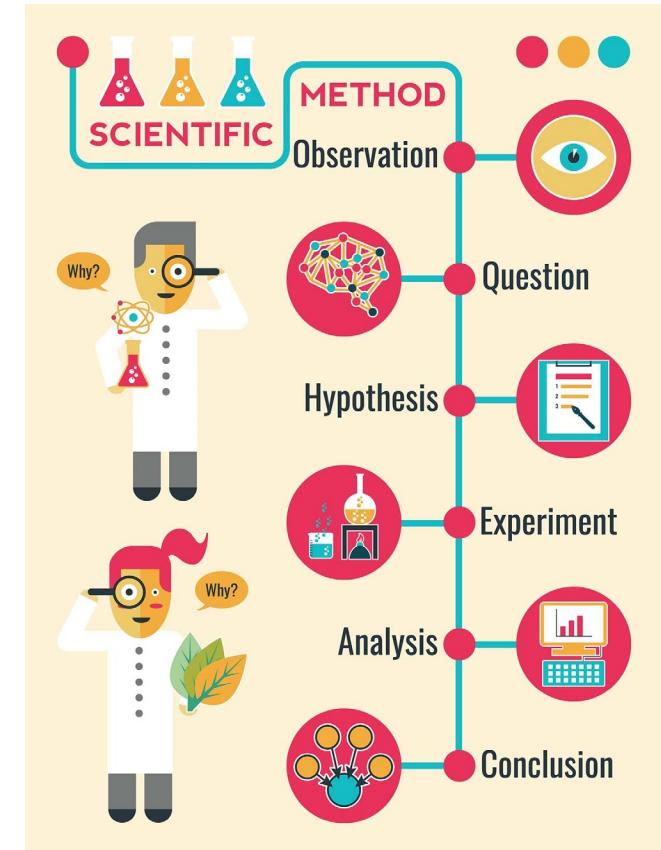


The Scientific Method



& **UNIVERSITY
CENTRE**

What is the scientific method?

- **Definition:**
 - A structured process used to investigate questions and solve problems.
 - Ensures results are logical, repeatable, and reliable.
- **Key Features:**
 - Step-by-step approach (observation → hypothesis → testing → conclusion).
 - Reduces bias by relying on evidence, not opinion.
 - Used in both science and engineering.
- **Why It Matters:**
 - Helps us explain natural phenomena.
 - Guides invention and problem-solving.
 - Builds knowledge that can be trusted and shared.

Why is the scientific method important?

- **Ensures Reliability**
 - Experiments can be repeated and verified.
- **Encourages Critical Thinking**
 - Decisions based on evidence, not guesswork.
 - Drives Innovation
 - Used in engineering to test designs, prototypes, and systems.
- **Real-World Impact**
 - Medicine: testing vaccines and treatments.
 - Engineering: improving safety and efficiency in machines.
 - Everyday life: solving practical problems logically.

Step 1: Observation

- **Definition:**

- Careful noticing and recording of facts or phenomena.
- The starting point of all scientific investigations.

- **Examples:**

- Plants near a window grow taller than those in shade.
- A circuit overheats after being switched on for a long time.
- Ice melts faster on metal than on plastic.

- **Key Points:**

- Must be accurate and unbiased.
- Can involve the senses or tools (microscopes, sensors, measuring devices).
- Good observations lead to meaningful questions.

Step 2: Questioning

- **Definition:**
 - Turning observations into testable questions.
 - Focused questions help guide investigations.
- **Examples:**
 - Observation: “Plants near the window grow taller.” → Question: Does more light make plants grow faster?
 - Observation: “The circuit overheats.” → Question: Why does the circuit heat up when current flows?
- **Key Points:**
 - Good questions are clear and specific.
 - Should lead to an experiment or test.
 - Avoid vague or untestable questions (e.g., “Why is life unfair?”).

Step 3: Hypothesis

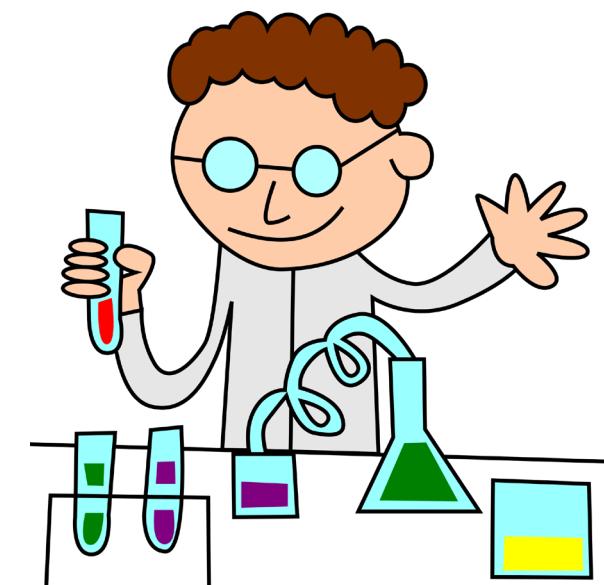
- **Definition:**
 - An educated guess that explains your observation.
 - Based on prior knowledge or research.
 - Must be testable and falsifiable.
- **Examples:**
 - If plants near windows grow taller, then light increases plant growth.
 - If the circuit overheats, then too much current is flowing.
- **Key Points:**
 - A hypothesis is not just a guess—it's grounded in reasoning.
 - Should be written as a clear statement, not a question.
 - Leads directly to predictions that can be tested.

Step 4: Prediction

- **Definition:**
 - A logical outcome you expect if the hypothesis is correct.
 - “If ... then ...” statements are common.
 - In engineering, predictions can also be tested through simulation (e.g., CAD, computer models).
- **Examples:**
 - Hypothesis: Light increases plant growth. → Prediction: If a plant is moved into more light, then it will grow taller.
 - Hypothesis: Too much current causes overheating. → Prediction: If resistance is increased, then the circuit will stay cooler.
- **Key Points:**
 - Predictions connect directly to the test/experiment.
 - Simulations can save time and resources before real-world testing.

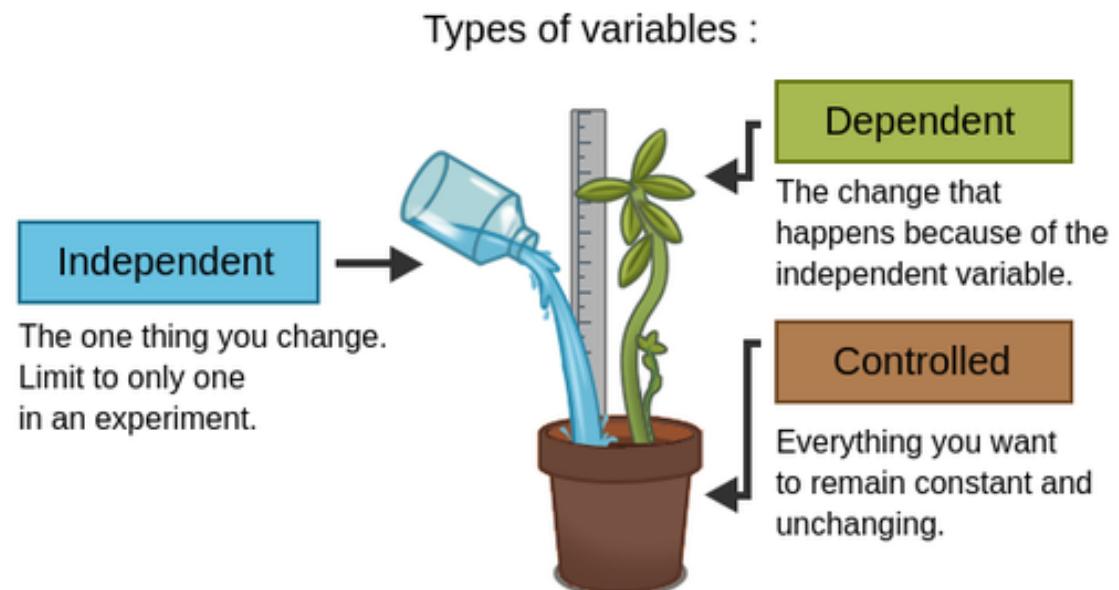
Step 5: Testing (Experiment)

- **Definition:**


- Carrying out an investigation to collect data and check if the prediction is correct.
- Must be fair, controlled, and repeatable.

- **Examples:**

- Place two plants in different light conditions and measure their growth.
- Run a circuit at different resistances and record the temperature.

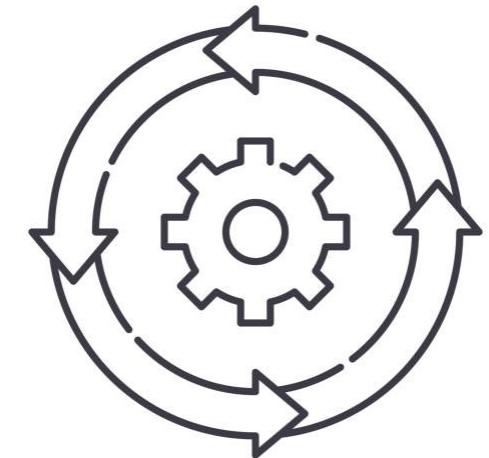

- **Key Points:**

- Control variables: keep all factors the same except the one being tested.
- Repeat experiments to ensure reliable results.
- Record data carefully (tables, graphs, measurements).

Step 5: Testing (Variables)

- **Independent Variable**
 - The factor you change in the experiment.
 - Example: Amount of light given to plants.
- **Dependent Variable**
 - The factor you measure as a result.
 - Example: Plant height.
- **Control Variables**
 - The factors you keep the same to ensure a fair test.
 - Example: Type of plant, soil, water amount, temperature.
- **Key Point:**
 - Only one variable should be changed at a time.

Step 6: Conclusion


- **Definition:**
 - Explaining what the results of the experiment show.
 - Decide if the hypothesis was supported or rejected.
- **Examples:**
 - Supported: Plants in more light grew taller → light affects growth.
 - Rejected: Circuit didn't overheat at high current → another factor must be involved.
- **Key Points:**
 - A conclusion is based on evidence, not opinion.
 - Even if the hypothesis is wrong, the experiment is still valuable.
 - Results may raise new questions.

Step 7: Iteration

- **Definition:**
 - Repeating the scientific method with refined questions or new hypotheses.
 - Science and engineering rarely stop after one test.
- **Examples:**
 - If light wasn't the only factor for plant growth → test soil nutrients or water.
 - If a circuit still overheats → test different materials or cooling methods.
- **Key Points:**
 - Knowledge builds step by step.
 - Failure often provides the most useful information.
 - Iteration is how technology and science improve over time.

The 7 Key Steps

- **Observation** – Notice something.
- **Questioning** – Ask why/how.
- **Hypothesis** – Make an educated guess.
- **Prediction / Simulation** – State what should happen.
- **Testing (Experiment)** – Collect data.
- **Conclusion** – Interpret the results.
- **Iteration** – Refine and repeat.