

# Exponentials

---



# Multiplying Exponentials

---

- We know  $x^2 = (x * x)$  and we know  $x^4 = (x * x * x * x)$
- So if we do  $x^2 * x^4$  we get  $(x * x) * (x * x * x * x)$  which is  $(x * x * x * x * x * x)$  or  $x^6$   $\Rightarrow$  With the Same Base
- So  $x^n * x^m = x^{n+m}$   $a^m \times a^n = a^{m+n}$
- Note this only works when the base is the same

# Multiplying Exponentials

---

- When we have 2 values with the same exponential but different base we can put them in brackets

⇒ [With Different Bases and Same Powers](#)

- If the bases and the powers are different then you can only multiply them

$$a^n \times b^n = (a \times b)^n$$

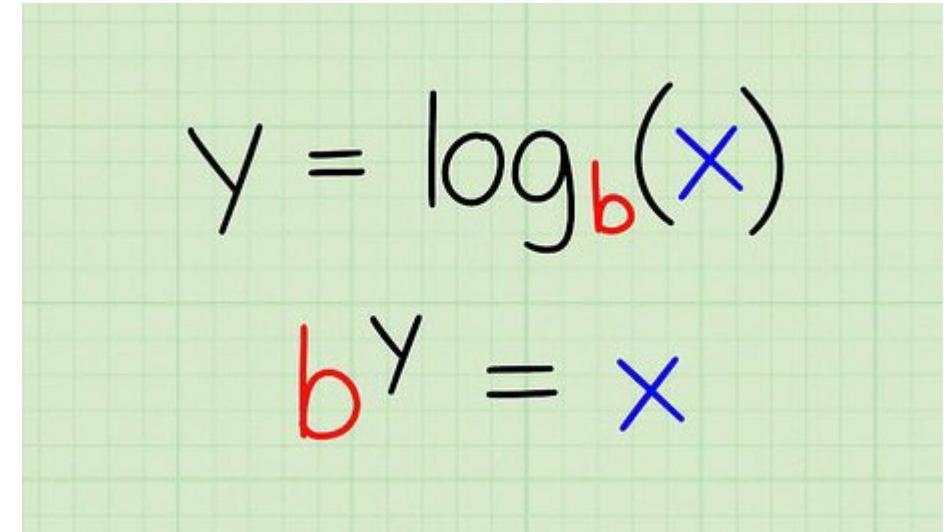
⇒ [With Different Bases and Different Powers](#)

$$a^n \times b^m = (a^n) \times (b^m)$$

# Using Logarithms

---

- When we have a value, we don't know as an exponential we can use logarithms
- This allows us to bring the exponential down and use it in our calculations
- Note if we are using logarithms, we must do the same to every part of our equation



Handwritten logarithmic equations on lined paper. The top equation is  $y = \log_b(x)$  and the bottom equation is  $b^y = x$ . The variable  $b$  is written in red, while  $y$  and  $x$  are written in blue.

$$y = \log_b(x)$$
$$b^y = x$$

# Logarithm Bases

---

- A logarithm base is the value at the bottom of a logarithm
- By default, it is 10
- But when we solve exponentials, we substitute values into the bottom of the logarithm
- **Note:**
- $\log_x(x) = 1$
- So  $\log_7(7) = 1$

$$\log_b n = a \text{ and } b^a = n$$

n=power (result obtained by raising b to the power of a)

b=base      a=exponent

# Solving simple exponentials

---

- Our first step in solving a logarithm question is to log both sides using a log with base equal to the base of the exponential
- So, for  $5^x$  we use  $\log_5 5$  as it has the same base as the exponential
- We can then rearrange the equation to get our x value

$$\begin{aligned}1. \quad & 5^x = 20 \\2. \quad & x \log_5(5) = \log_5(20)\end{aligned}$$

$$3. \quad x = \frac{\log_5(20)}{\log_5(5)}$$

$$4. \quad x = 1.861353116$$

# Solving simple exponentials

---

- This uses the same method we just employed; it's just a bit longer
- We start by logging both sides using  $\log_{52}$  as the exponential has a base of 52 ( $52^{(2x+3)}$ )
- We then divide both sides by  $\log_{52}(52)$  to isolate x
- We then isolate x further to get our final value

$$1. \ 52^{(2x+3)} = 29$$

$$2. \ (2x + 3)\log_{52}(52) = \log_{52}(29)$$

$$3. \ 2x + 3 = \frac{\log_{52}(29)}{\log_{52}(52)}$$

$$4. \ 2x = \frac{\log_{52}(29)}{\log_{52}(52)} - 3$$

$$5. \ x = \frac{\frac{\log_{52}(29)}{\log_{52}(52)} - 3}{2} = -1.073894188$$

# Solving Simple Exponents (Part 2)

---

- This question is a bit harder, but we still use the same methodology
- We start by logging both sides, we can pick whatever base we want (either 10 or 15) but I always recommend whatever is easier
- In this situation 10 is easier so we use  $\log_{10}$
- We then continue to simplify and rearrange the equation to get  $x$

$$1. \quad 10^{(4x+2)} = 15^{(3x+4)}$$

$$2. \quad (4x + 2)\log_{10}(10) = (3x + 4)\log_{10}(15)$$

$$3. \quad (4x + 2) * 1 = (3x + 4)\log_{10}(15)$$

$$4. \quad 4x + 2 = 3\log_{10}(15)x + 4\log_{10}(15)$$

$$5. \quad 4x - 3\log_{10}(15)x = 4\log_{10}(15) - 2$$

$$6. \quad (4 - 3\log_{10}(15))x = 4\log_{10}(15) - 2$$

$$7. \quad 0.4717262228x = 2.704365036$$

$$8. \quad x = \frac{2.704365036}{0.4717262228} = 5.732912239$$

# A few questions

---

Find the value of X in all these questions:

$$1. 80^{(2x-20)} = 6400$$

$$2. 32^{(2x+2)} = 10^{(3x-10)}$$

$$3. 100^{(4x+9)} = 1000000^x$$

$$1. x = 11$$

---

$$2. x = -1263.141$$

---

$$3. x = -9$$

# Quick Solving Exponents

---

$$25^{(x+3)} = 625^{(2x+1)}$$

---

$$5^{2(x+3)} = 5^{4(2x+1)}$$

---

$$5^{2x+6} = 5^{8x+4}$$

$$2x + 6 = 8x + 4$$

---

$$6x = 2$$

$$x = \frac{2}{6} = \frac{1}{3} = 0.33333\dots$$

e

---

- e is a mathematical constant
- e is an irrational number and thus goes on infinitely like pi
- e is approximately equal to **2.718281828**

$$e^{i\pi} + 1 = 0$$

Euler's formula (not necessary but pretty)

# Why is e important?

---

$$\log_e e^x = x$$

This is known as  
the natural log

$$\log_e x = \ln x$$



# Using natural logarithms

---

$$e^{(2x+1)} = 10$$

$$2x + 1 = \ln 10$$

---

$$2x = \ln 10 - 1$$

---

$$x = \frac{\ln 10 - 1}{2} = 0.6512925465$$

# Inverse Log

---

$$\log(100) = 2$$

$$\log^{-1}(2) = 100$$

# Some questions

---

---

$$1. 10e^{(2x-2)} + 14 = 125$$

---

$$2. 23^{5x} - 15 = 245$$

---

$$3. \log x = 82$$