
Derivatives



What are derivatives?
• Derivatives measure change: They represent 

how a function's output changes in response to 
a small change in its input—essentially the rate 
of change or slope at a specific point.

• Used to find slopes and trends: In graphs, a 
derivative tells you the slope of the tangent line 
to a curve at a point, indicating whether the 
function is increasing or decreasing.

• Applied in many fields: Derivatives are widely 
used in physics, engineering, and economics to 
model motion, optimize systems, and analyze
change.



Applications of Derivatives
• Physics: Derivatives describe motion —

velocity is the derivative of position, and 
acceleration is the derivative of velocity.

• Engineering: Used to analyse changing 
currents, voltages, or stresses in 
materials.

• Economics: Help determine marginal 
cost and revenue — how cost or profit 
changes with production level.



Derivative Symbol

• When we work out derivatives, we use special notation 
so we can read it back easily

• The most common symbol is 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

which means the 
derivative of y with respect to x (y is the 
output/function, x is the input/variable) this is the 
Leibniz notation

• We can also use the prime notation 𝑓𝑓𝑓(𝑥𝑥) which is read 
as “f prime of x”



Derivatives of constants
• The derivative of any constant will always be 0

• This is because constants don’t change

• 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑐𝑐 = 0

• 𝑑𝑑
𝑑𝑑𝑑𝑑

5 = 0

• 𝑑𝑑
𝑑𝑑𝑑𝑑

−7 = 0



Derivatives of monomials

• A monomial is a polynomial which only has 1 
term

• We use the power rule to work out monomials

• The power rule dictates:

• 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥𝑛𝑛 = 𝑛𝑛𝑥𝑥𝑛𝑛−1



Examples of derivatives of monomials

• 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥𝑛𝑛 = 𝑛𝑛𝑥𝑥𝑛𝑛−1

• 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥2 = 2𝑥𝑥2−1 = 2𝑥𝑥1 = 2𝑥𝑥

• 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥4 = 4𝑥𝑥4−1 = 4𝑥𝑥3



The constant multiple rule

• When we add constants in front of 
monomials we don’t change much 
about our equation

• 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑐𝑐 ∗ 𝑓𝑓 𝑥𝑥 = 𝑐𝑐 ∗ 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑓𝑓(𝑥𝑥)]

• We can then use the power rule to 
work out 𝑑𝑑

𝑑𝑑𝑑𝑑
[𝑓𝑓(𝑥𝑥)]



The constant multiple rule

• 𝑑𝑑
𝑑𝑑𝑑𝑑

3𝑥𝑥6 = 3 ∗ 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥6

• 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥6 = 6𝑥𝑥6−1 = 6𝑥𝑥5

• 𝑑𝑑
𝑑𝑑𝑑𝑑

3𝑥𝑥6 = 3 ∗ 6𝑥𝑥5 = 18𝑥𝑥5



Your Turn

• Can you work out the derivative of these equations

• 𝑓𝑓 𝑥𝑥 = 𝑥𝑥4

• 𝑓𝑓 𝑥𝑥 = 𝑥𝑥11

• 𝑓𝑓 𝑥𝑥 = 4𝑥𝑥5

• 𝑓𝑓 𝑥𝑥 = 1.5𝑥𝑥3



Your Turn - Answers

• Can you work out the derivative of these equations

• 𝑓𝑓𝑓 𝑥𝑥 = 4𝑥𝑥3

• 𝑓𝑓𝑓 𝑥𝑥 = 11𝑥𝑥10

• 𝑓𝑓𝑓 𝑥𝑥 = 20𝑥𝑥4

• 𝑓𝑓𝑓 𝑥𝑥 = 4.5𝑥𝑥2



Definition of a Derivative

• We know that if 𝒇𝒇 𝒙𝒙 = 𝒙𝒙𝟐𝟐 then 𝒇𝒇′ 𝒙𝒙 = 𝟐𝟐𝟐𝟐

• This follows the mathematical definition of a derivative which follows this 
function:

• 𝑓𝑓′ 𝑥𝑥 = lim
ℎ→0

𝑓𝑓 𝑥𝑥+ℎ −𝑓𝑓(𝑥𝑥)
ℎ

• We can prove his thus proving the definition



Definition of a Derivative
• We know that if 𝒇𝒇 𝒙𝒙 = 𝒙𝒙𝟐𝟐 then 𝒇𝒇′ 𝒙𝒙 = 𝟐𝟐𝟐𝟐

• If we plug 𝑓𝑓(𝑥𝑥) into our equation 𝑓𝑓′ 𝑥𝑥 = lim
ℎ→0

𝑓𝑓 𝑥𝑥+ℎ −𝑓𝑓(𝑥𝑥)
ℎ

we get:

• 𝑓𝑓′ 𝑥𝑥 = lim
ℎ→0

𝑥𝑥+ℎ 2−𝑥𝑥2

ℎ

• Next, we use our polynomial multiplication to work out (𝑥𝑥 + ℎ)2

• 𝑓𝑓′ 𝑥𝑥 = lim
ℎ→0

𝑥𝑥+ℎ 𝑥𝑥+ℎ −𝑥𝑥2

ℎ



Definition of a Derivative

• We know that if 𝒇𝒇 𝒙𝒙 = 𝒙𝒙𝟐𝟐 then 𝒇𝒇′ 𝒙𝒙 = 𝟐𝟐𝟐𝟐

• 𝑓𝑓′ 𝑥𝑥 = lim
ℎ→0

𝑥𝑥+ℎ 𝑥𝑥+ℎ −𝑥𝑥2

ℎ
= lim

ℎ→0

𝑥𝑥2+𝑥𝑥𝑥+𝑥𝑥𝑥+ℎ2 −𝑥𝑥2

ℎ
= lim

ℎ→0
2𝑥𝑥𝑥+ℎ2

ℎ

• Next we take out the greatest common factor

• 𝑓𝑓′ 𝑥𝑥 = lim
ℎ→0

2𝑥𝑥𝑥+ℎ2

ℎ
= lim

ℎ→0
ℎ(2𝑥𝑥+ℎ)

ℎ
= lim

ℎ→0
2𝑥𝑥 + ℎ



Definition of a Derivative
• We know that if 𝒇𝒇 𝒙𝒙 = 𝒙𝒙𝟐𝟐 then 𝒇𝒇′ 𝒙𝒙 = 𝟐𝟐𝟐𝟐

• 𝑓𝑓′ 𝑥𝑥 = lim
ℎ→0

2𝑥𝑥 + ℎ

• As h approaches 0 we put in 0 as h

• So 𝑓𝑓′𝑥𝑥 = 2𝑥𝑥 + 0 = 2𝑥𝑥

• Thus we have proven the derivative equation and thus defined it



Finding the slope at an x value
• Once we have worked out our derivative, we can then substitute in an x value 

to find the slope

• So, if we have 𝑓𝑓 𝑥𝑥 = 𝑥𝑥3 then we know 𝑓𝑓′ 𝑥𝑥 = 3𝑥𝑥2

• And if we want to find the slope when x = 2 then we can substitute it in

• 𝑓𝑓′ 3 = 3(32) = 12

• So, the slope of the tangent line @ x =3 is equal to 27



Finding the slope at an x value

• So, the slope of the tangent line @ x =3 is equal 
to 27

• So, if we draw out the graph, we can draw the 
tangent line with a gradient of 27

• For simplicity when drawing out the graph and 
tangent you can just sketch on both and just 
ensure values are given

m=27



Proving the tangent gradient 
• You may be asked to prove that the tangent has 

that gradient

• To do this we use another rule which is the 
equation of a straight line from 2 points

• 𝑚𝑚 = 𝑦𝑦2−𝑦𝑦1
𝑥𝑥2−𝑥𝑥1

• To use this rule, we plug in two points which 
average out to our x value

m=27



Proving the tangent gradient 
• So, the slope of the tangent line @ x =3 is equal to 27 when 
𝒇𝒇 𝒙𝒙 = 𝒙𝒙𝟑𝟑

• We could use the values x=4 and x=2 because they average 
to x=3

• But we want much closer values to be more accurate so we 
will use x=2.99 and x=3.01, we then use the 𝑓𝑓 𝑥𝑥  for y values

• So point 
• 𝑥𝑥1,𝑦𝑦1 = (2.99, 2.993) 
• and 
• 𝑥𝑥2,𝑦𝑦2 = (3.01, 3.013) 

m=27



Proving the tangent gradient 
• 𝑥𝑥1,𝑦𝑦1 = (2.99, 2.993) 
• 𝑥𝑥2,𝑦𝑦2 = (3.01, 3.013) 

• We then plug that into our equation:

• 𝑚𝑚 = 3.013−2.993

3.01−2.99
= 27.0001 ≈ 27

• Meaning our answer is correct

m=27



Example of harder derivative
• When doing larger derivatives don’t panic, just break it down 

• 𝑓𝑓 𝑥𝑥 = 2𝑥𝑥3 + 12𝑥𝑥2 − 7𝑥𝑥 + 2

• 𝑓𝑓 𝑥𝑥 = 2𝑥𝑥3 → 𝑓𝑓′ 𝑥𝑥 = 3 2𝑥𝑥2 = 6𝑥𝑥2
• 𝑓𝑓 𝑥𝑥 = 12𝑥𝑥2 → 𝑓𝑓′ 𝑥𝑥 = 2 12𝑥𝑥 = 24𝑥𝑥
• 𝑓𝑓 𝑥𝑥 = −7𝑥𝑥 → 𝑓𝑓′ 𝑥𝑥 = 1 −7𝑥𝑥0 = −7
• 𝑓𝑓 𝑥𝑥 = 2 → 𝑓𝑓′ 𝑥𝑥 = 0

• 𝑓𝑓′ 𝑥𝑥 = 6𝑥𝑥2 + 24𝑥𝑥 − 7



Example of harder derivative - gradient
• Now we have:

• 𝑓𝑓′ 𝑥𝑥 = 6𝑥𝑥2 + 24𝑥𝑥 − 7

• We want to find m when 𝑥𝑥 = 2

• 𝑓𝑓′ 2 = 6(2)2+24 2 − 7 = 65

• 𝑚𝑚 = 65



Example of harder derivative #2

• When doing division derivatives don’t panic, just use negative exponentials

• 𝑓𝑓 𝑥𝑥 = 3
𝑥𝑥2

• 𝑓𝑓 𝑥𝑥 = 3
𝑥𝑥2

= 3(𝑥𝑥−2)

• 𝑓𝑓′ 𝑥𝑥 = 3 −2𝑥𝑥−2−1 = 3 −2𝑥𝑥−3 = −6𝑥𝑥−3 = − 6
𝑥𝑥3



Example of harder derivative #2 - 
gradient
• Now we have:

• 𝑓𝑓′ 𝑥𝑥 = −6𝑥𝑥−3

• We want to find m when 𝑥𝑥 = 2

• 𝑓𝑓′ 2 = −6(2−3) = −0.75

• 𝑚𝑚 = −0.75



Example of harder derivative #3

• When doing division derivatives don’t panic, just use negative exponentials

• 𝑓𝑓 𝑥𝑥 = 5 𝑥𝑥9

• 𝑓𝑓 𝑥𝑥 = 𝑥𝑥9/5

• 𝑓𝑓′ 𝑥𝑥 = 9
5
𝑥𝑥
9
5−1 = 9

5
𝑥𝑥
4
5 = 9𝑥𝑥

4
5

5
= 95 𝑥𝑥4

5



Example of harder derivative #3 - 
gradient
• Now we have:

• 𝑓𝑓′ 𝑥𝑥 = 95 𝑥𝑥4

5

• We want to find m when 𝑥𝑥 = 4

• 𝑓𝑓′ 4 = 95 44

5
= 5.456579639

• 𝑚𝑚 ≈ 5.46



Your Turn
• Can you find the derivative of these functions and their gradient when x = 4

• 𝑓𝑓 𝑥𝑥 = 7𝑥𝑥2 + 15𝑥𝑥 + 9

• 𝑓𝑓 𝑥𝑥 = 19𝑥𝑥3 + 10𝑥𝑥2 + 9𝑥𝑥 + 27

• 𝑓𝑓 𝑥𝑥 = 8
𝑥𝑥4

• 𝑓𝑓 𝑥𝑥 = 3 𝑥𝑥7



Your Turn - Results
• Can you find the derivative of these functions and their gradient when x = 4

• 𝑓𝑓𝑓 𝑥𝑥 = 14𝑥𝑥 + 15

• 𝑓𝑓𝑓 𝑥𝑥 = 57𝑥𝑥2 + 20𝑥𝑥 + 9

• 𝑓𝑓𝑓 𝑥𝑥 = −32
𝑥𝑥5

• 𝑓𝑓𝑓 𝑥𝑥 = 73 𝑥𝑥4

3



Derivative of Trigonometric Functions 

• The trigonometric functions follow 
simple rules:

• 𝑑𝑑
𝑑𝑑𝑑𝑑

sin 𝑥𝑥 = cos 𝑥𝑥

• 𝑑𝑑
𝑑𝑑𝑑𝑑

c𝑜𝑜𝑜𝑜 𝑥𝑥 = −sin 𝑥𝑥

• 𝑑𝑑
𝑑𝑑𝑑𝑑

sec(𝑥𝑥) = se𝑐𝑐 𝑥𝑥 ∗ tan(𝑥𝑥)

• 𝑑𝑑
𝑑𝑑𝑑𝑑

csc(𝑥𝑥) = −c𝑠𝑠𝑠𝑠 𝑥𝑥 ∗ cot(𝑥𝑥)

• 𝑑𝑑
𝑑𝑑𝑑𝑑

tan 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠2 𝑥𝑥

• 𝑑𝑑
𝑑𝑑𝑑𝑑

cot(𝑥𝑥) = −𝑐𝑐𝑐𝑐𝑐𝑐2 𝑥𝑥



Product Rule

• We use the product rule when we are 
multiplying two functions together

• It follows the rule:

• 𝒅𝒅
𝒅𝒅𝒅𝒅

𝒇𝒇 𝒙𝒙 𝒈𝒈 𝒙𝒙 = 𝒇𝒇 𝒙𝒙 𝒈𝒈′ 𝒙𝒙 + 𝒇𝒇′ 𝒙𝒙 𝒈𝒈(𝒙𝒙)



Product Rule - Example

• 𝒅𝒅
𝒅𝒅𝒅𝒅

𝒇𝒇 𝒙𝒙 𝒈𝒈 𝒙𝒙 = 𝒇𝒇 𝒙𝒙 𝒈𝒈′ 𝒙𝒙 + 𝒇𝒇′ 𝒙𝒙 𝒈𝒈(𝒙𝒙)

• 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥 + 2

• 𝑔𝑔 𝑥𝑥 = 5𝑥𝑥2 + 2𝑥𝑥 + 1

• 𝑓𝑓𝑓 𝑥𝑥 = 3

• 𝑔𝑔𝑔 𝑥𝑥 = 10𝑥𝑥 + 2



Product Rule - Example

• 𝒅𝒅
𝒅𝒅𝒅𝒅

𝒇𝒇 𝒙𝒙 𝒈𝒈 𝒙𝒙 = 𝒇𝒇 𝒙𝒙 𝒈𝒈′ 𝒙𝒙 + 𝒇𝒇′ 𝒙𝒙 𝒈𝒈(𝒙𝒙)

• 𝑓𝑓𝑓 𝑥𝑥 = 3

• 𝑔𝑔𝑔 𝑥𝑥 = 10𝑥𝑥 + 2

• 𝑑𝑑
𝑑𝑑𝑑𝑑

(3𝑥𝑥 + 2 )(5𝑥𝑥2 + 2𝑥𝑥 + 1 ) = (3𝑥𝑥 + 2)(10𝑥𝑥 + 2) + 3(5𝑥𝑥2 + 2𝑥𝑥 + 1)



Product Rule - Example

• 𝑑𝑑
𝑑𝑑𝑑𝑑

(3𝑥𝑥 + 2 )(5𝑥𝑥2 + 2𝑥𝑥 + 1 ) = (3𝑥𝑥 + 2)(10𝑥𝑥 + 2) + 3(5𝑥𝑥2 + 2𝑥𝑥 + 1)

• 𝑑𝑑
𝑑𝑑𝑑𝑑

(3𝑥𝑥 + 2 )(5𝑥𝑥2 + 2𝑥𝑥 + 1 ) = (30𝑥𝑥2 + 20𝑥𝑥 + 6𝑥𝑥 + 4) + (15𝑥𝑥2 + 6𝑥𝑥 + 3)

• 𝑑𝑑
𝑑𝑑𝑑𝑑

(3𝑥𝑥 + 2 )(5𝑥𝑥2 + 2𝑥𝑥 + 1 ) = (45𝑥𝑥2 + 32𝑥𝑥 + 7) 



Product Rule - Example

• If we want to find m when x=3 we just plug it in

• 𝑑𝑑
𝑑𝑑𝑑𝑑

(3𝑥𝑥 + 2 )(5𝑥𝑥2 + 2𝑥𝑥 + 1 ) = (45𝑥𝑥2 + 32𝑥𝑥 + 7) 

• 𝑑𝑑
𝑑𝑑𝑑𝑑

(3𝑥𝑥 + 2 )(5𝑥𝑥2 + 2𝑥𝑥 + 1 ) = 45 3 2 + 32 3 + 7 = 508

• 𝑚𝑚 = 508



Quotient Rule

• Used when dividing one function by another

• It follows the rule:

• 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

= 𝑔𝑔 𝑥𝑥 𝑓𝑓′ 𝑥𝑥 −𝑓𝑓 𝑥𝑥 𝑔𝑔𝑔(𝑥𝑥)
(𝑔𝑔(𝑥𝑥))2



Quotient Rule - Example

• 𝒅𝒅
𝒅𝒅𝒅𝒅

𝒇𝒇(𝒙𝒙)
𝒈𝒈(𝒙𝒙)

= 𝒈𝒈 𝒙𝒙 𝒇𝒇′ 𝒙𝒙 −𝒇𝒇 𝒙𝒙 𝒈𝒈𝒈(𝒙𝒙)
(𝒈𝒈(𝒙𝒙))𝟐𝟐

• 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥 + 2

• 𝑔𝑔 𝑥𝑥 = 5𝑥𝑥2 + 2𝑥𝑥 + 1

• 𝑓𝑓𝑓 𝑥𝑥 = 3

• 𝑔𝑔𝑔 𝑥𝑥 = 10𝑥𝑥 + 2



Quotient Rule - Example

• 𝒅𝒅
𝒅𝒅𝒅𝒅

𝒇𝒇(𝒙𝒙)
𝒈𝒈(𝒙𝒙)

= 𝒈𝒈 𝒙𝒙 𝒇𝒇′ 𝒙𝒙 −𝒇𝒇 𝒙𝒙 𝒈𝒈𝒈(𝒙𝒙)
(𝒈𝒈(𝒙𝒙))𝟐𝟐

• 𝑓𝑓𝑓 𝑥𝑥 = 3

• 𝑔𝑔𝑔 𝑥𝑥 = 10𝑥𝑥 + 2

• 𝑑𝑑
𝑑𝑑𝑑𝑑

3𝑥𝑥+2
5𝑥𝑥2+2𝑥𝑥+1 = 3(5𝑥𝑥2+2𝑥𝑥+1) −(3𝑥𝑥+2)(10𝑥𝑥+2)

(5𝑥𝑥2+2𝑥𝑥+1)2



Quotient Rule - Example

• 𝑑𝑑
𝑑𝑑𝑑𝑑

3𝑥𝑥+2
5𝑥𝑥2+2𝑥𝑥+1 = 3(5𝑥𝑥2+2𝑥𝑥+1) −(3𝑥𝑥+2)(10𝑥𝑥+2)

(5𝑥𝑥2+2𝑥𝑥+1)2

• (15𝑥𝑥2+6𝑥𝑥+3) −(30𝑥𝑥2+26𝑥𝑥+4)
(5𝑥𝑥2+2𝑥𝑥+1)(5𝑥𝑥2+2𝑥𝑥+1)

• −15𝑥𝑥2−20𝑥𝑥−1
25𝑥𝑥4+15𝑥𝑥3+5𝑥𝑥2+15𝑥𝑥3+4𝑥𝑥2+2𝑥𝑥+5𝑥𝑥2+2𝑥𝑥+1

= −15𝑥𝑥2−20𝑥𝑥−1
25𝑥𝑥4+30𝑥𝑥3+14𝑥𝑥2+4𝑥𝑥+1
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