Derlvatives




What are derivatives?

* Derivatives measure change: They represent
how a function's output changes in response to
a small change in its input—essentially the rate
of change or slope at a specific point. 1

slope = f'(x)

* Used to find slopes and trends: In graphs, a
derivative tells you the slope of the tangent line il
to a curve at a point, indicating whether the
function is increasing or decreasing.

* Applied in many fields: Derivatives are widely
used in physics, engineering, and economics to
model motion, optimize systems, and analyze
change. ———
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Applications of Derivatives

* Physics: Derivatives describe motion —
velocity is the derivative of position, and A
acceleration is the derivative of velocity.

T  slope =f'(x)
* Engineering: Used to analyse changing
currents, voltages, or stresses in 1
materials. 1

* Economics: Help determine marginal
cost and revenue — how cost or profit
changes with production level. 1
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Derivative Symbol

* When we work out derivatives, we use special notation
so we can read it back easily -y'

. d :
* The most common symbol is d—z which means the
derivative of y with respect to x (y is the

output/function, x is the input/variable) this is the
Leibniz notation I

* We can also use the prime notation f'(x) which is read
as “f prime of x”




Derivatives of constants

* The derivative of any constant will always be 0

* This is because constants don’t change

.E[C] =0
+ - [5] =0
L [=7] =0

| (0,5) E




Derivatives of monomials

* A monomial is a polynomial which only has 1 | \ /
term | | \2/ |
* We use the power rule to work out monomials 4 2 - 2 y
* The power rule dictates: | L | / |
2

— (") = nx | _




Examples of derivatives of monomials

L4 ony o on—1 | \ /
dx(x)—nx . . X .
d , 5 _— X | \/
-E(x)=2x = 2x" = 2x ﬁ ;

. %(x‘*) = 4x* 1 = 4x3 | | > / |




The constant multiple rule

* When we add constants in front of | \ /
monomials we don’t change much | | - |
about our equation | | \/ |
p p i 2 o 2 ] 114
‘E[C*f(x)]=C*E[f(x)] | Nl | /
| | 2 |
* We can then use the power rule to | | |
work out = [ (x)] | | |




The constant multiple rule

-%[3x6]=3*%[x6] : \ 2 /
DR N

4 7 0 2 4
dx ; . s .

+ = [3x%] = 3 % 625 = 18x° O, /




Your Turn

* Can you work out the derivative of these equations

fG0) = x*
fG0) = 21

s f(x) = 4x®

* f(x) = 1.5x°




Your Turn - Answers

* Can you work out the derivative of these equations
° f'(x) = 4x3
« f'(x) = 11x1Y

e f'(x) = 20x*

* f'(x) = 4.5x2




Definition of a Derivative

* We know that if f(x) = x? then f'(x) = 2x

* This follows the mathematical definition of a derivative which follows this
function:

o £/ i fxth)—f(x)
/() = lim L4

* We can prove his thus proving the definition




Definition of a Derivative

* We know that if f(x) = x? then f'(x) = 2x

* If we plug f(x) into our equation f'(x) = ’llirr(l) f(x+hz_f(x) we get:

(x+h)%—x2

, .
* f'(x) = lim
f'(x) = lim
* Next, we use our polynomial multiplication to work out (x + h)?

(x+h)(x+h)—x?
h

* f(x) = lim




Definition of a Derivative

* We know that if f(x) = x? then f'(x) = 2x

x+h)(x+h)—x?2 . x%+xh+xh+h?)—x2 . 2xh+h?
(eth)(x+h) =11m( ) = lim

h—0 h h—0

’ "
* f'(x) = lim
f'(x) = lim
* Next we take out the greatest common factor

Y .. 2xh+h* .. h(2x+h) _ ..
f(x)—}ll_r)r(l) - —}ll_r)r(l) - ;ll_r)%Zx+h




Definition of a Derivative

* We know that if f(x) = x? then f'(x) = 2x
* f'(x) = }ll_r)r(l)Zx + h

* As h approaches O we putin0Oash

*Sof'x =2x+0=2x

* Thus we have proven the derivative equation and thus defined it




Finding the slope at an x value

* Once we have worked out our derivative, we can then substitute in an x value
to find the slope

* So, if we have f(x) = x3 then we know f'(x) = 3x?
* And if we want to find the slope when x = 2 then we can substitute it in
$f(3) = 3(3%) = 12

* So, the slope of the tangent line @ x =3 is equal to 27




Finding the slope at an x value

* So, the slope of the tangent line @ x =3 is equal \
to 27 \ | Qm=7v7
* So, if we draw out the graph, we can draw the | \ T | /
tangent line with a gradient of 27 \ : j /
* For simplicity when drawing out the graph and \ //
tangent you can just sketch on both and just | \ //
ensure values are given T |

3 2 -1 :
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T TS ST




Proving the tangent gradient

* You may be asked to prove that the tangent has \ - | /
that gradient \ | |

m=27
* To do this we use another rule which is the \ s |
equation of a straight line from 2 points \ | | /

.mZYZ_Jﬁ \

X2—X1 : \ |

* To use this rule, we plug in two points which \

average out to our X value | | \2 /

\-.____h\_ﬁ_%.




Proving the tangent gradient

* So, the slope of the tangent line @ x =3 is equal to 27 when \ | y | /
f(x) =8 \ | |
| 2 “m=27
* We cguld use the values x=4 and x=2 because they average \ | |
to x= | |
* But we want much closer values to be more accurate so we | \ | s | /
will use x=2.99 and x=3.01, we then use the f(x) for y values \ | | /
* So point \ //
* (x,y1) = (2-99»2-993) :
SEELNERREEES
* (x3,5,) = (3.01,3.01%) | | \ / /
NN ANNERERCEARE




Proving the tangent gradient

| | |
* (x1,¥1) = (2.99,2.99%) \ Eam? : /
* (x3,v,) = (3.01,3.013) \ | |

* We then plug that into our equation: \ EEES | /

m =222 _ 27,0001 ~ 27 \ //
* Meaning our answer is correct \ //

: 2 -1 3
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T TS ST




Example of harder derivative

* When doing larger derivatives don’t panic, just break it down
e f(x) =2x3 +12x% — 7x + 2

* f(x) = 2x3 - f'(x) = 3(2x?) = 6x7

c f(x) =12x% > f'(x) = 2(12x) = 24x

Cf) = =Tx > f1(x0) = 1(=7x°) = 7

f@ =200 =0

* f'(x) = 6x°% + 24x — 7




Example of harder derivative - gradient

|
* Now we have: | | \ L |
e f'(x) = 6x% +24x — 7 EREEE \m |
* We want to find m when x = 2 \“’

* f'(2) = 6(2)2+24(2) — 7 = 65

°m = 65

10 5 5 10
-




Example of harder derivative #2

* When doing division derivatives don’t panic, just use negative exponentials
3
fx) ==
3 ~2
f(x) = Z=3(x"7)
6

s fl(x) =3(-2x* ") =3(-2x3) =—-6x3=——=

x3




Example of harder derivative
gradient

* Now we have:

“f'(x) = —6x73

2(

* We want to find m when x = 2
* f(2) = —6(2_3) = —0.75

em = —0.75




Example of harder derivative #3

* When doing division derivatives don’t panic, just use negative exponentials

f@x) = Va0
 fG) =3
* f'(x) = g(xg_l) =§(x§) = ? = 9?




Example of harder derivative #3 -
gradient

* Now we have:

5{/_

*fi(x) =

20

* We want to find m when x = 4

5 T . '
*f'(4) = \/_— 5.456579639 ’ 7 °/ i !

m =~ 5.46 / 4




Your Turn

* Can you find the derivative of these functions and their gradient when x =4
* f(x) =7x*+15x + 9
« f(x) =19x3 + 10x% + 9x + 27
8
c f(x) = P
Cfe0) = Vo




Your Turn - Results

* Can you find the derivative of these functions and their gradient when x =4
* f'(x) = 14x + 15

* f'(x) =57x% + 20x + 9

Cf0) = 2%
Fe =2

3




Derivative of Trigonometric Functions

* The trigonometric functions follow

simple rules:
+ L [sin(x)] = cos(x) + = [ese(x)] = —cse(x) * cot(x)
. % lcos(x)] = —sin(x) ° % [tan(x)] = sec?(x)
. ;_x |sec(x)] = sec(x) * tan(x) . ;—x |cot(x)] = —csc?(x)




Product Rule

* We use the product rule when we are
multiplying two functions together

* |t follows the rule:

L @] = F@ G @ + f (Dg@)




Product Rule - Example

L [f(0g@®)] = FR)g' () + f (g (x)
 f(x) =3x+2

cg(x) =5x+2x+1

cf(x) =3

*g'(x) =10x + 2




Product Rule - Example

L @] = F@ G @ + f (Dg@)
* f'(x) =3

*g'(x) =10x + 2

s [(Bx+2)(5x% + 2x +1)] = (3x +2)(10x + 2) +3(5x% + 2x + 1)




Product Rule - Example

s [(3x +2)(5x% + 2x + 1)] = (3x + 2)(10x + 2) +3(5x% + 2x + 1)
°%[(3x+2)(5x2 +2x +1)] = (30x% 4+ 20x + 6x + 4) + (15x° + 6x + 3)

s [(3x +2)(5x% + 2x + 1)] = (45x% + 32x + 7)




Product Rule - Example

* |f we want to find m when x=3 we just plugitin

s [(3x +2)(5x% + 2x + 1)] = (45x% + 32x + 7)

+ = [(Bx +2)(5x% + 2x +1)] = (45(3)2 + 32(3) + 7) = 508

*m = 508




Quotient Rule

* Used when dividing one function by another

* |t follows the rule:

. d [f(x) _ 9@ )-f(0)gr(x)

dx | g(x) (g(x))?




Quotient Rule - Example

L FACI) gx)f' (x)-f(x)g’(x)
dx [g(x) (g(x))2

* f(x) =3x+2
cg(x) =5x%+2x+1
*f'(x) =3

*g'(x) =10x + 2




Quotient Rule - Example

RN PACH) g f ()-fx)gr(x)
dx [g(x) (g(x))2

*fi(x) =3

*g'(x) =10x + 2

. d [ 3x+2 ] _ 3(5x%42x+1) —(3x+2)(10x+2)
dx L5x2+2x+1 1 (5x2+2x+1)?




Quotient Rule - Example

d [ 3x+2 ] _ 3(5x%42x+1) —(3x+2)(10x+2)
dx L5x2+2x+1 1 (5x2+2x+1)?

, (15x?+6x+3) —(30x°+26x+4)
(5x2+4+2x+1)(5x2%+2x+1)

—15x2-20x—-1 —15x2-20x—-1

25x4+15x3+5x2+15x3+4x2+2x+5x24+2x+1  25x%4+30x3+14x2+4x+1
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